glslify是一个shader的模块化工具,可以让shader模块化。虽然以前就关注过这个东西,但是并没有当回事。最近把shader-school里所有练习题完成了,终于体会到了glslify的强大。

完成留念

安装配置

       安装glslify非常简单,安装node.js之后,可以选择全局安装

npm install -g glslify

       也可以选择在本地安装,使用时可以配合browserify或其他自动化工具使用。

本地使用教程

编写一个glslify模块

       新建一个用来保存glsl模块的文件,我用module.glsl来示范。

// module.glsl

highp float sum(highp float x, highp float y) {
  return x + y;
}

#pragma glslify: export(sum)

       其中,最后一句#pragma glslify: export(sum)非常重要,表示该模块导出时的名字。

在其他文件中使用此模块

       新建一个调用该模块的glsl文件,我用input.glsl为例。

// input.glsl

#pragma glslify: sum = require(./module)

void main() {
  float s = sum(0.5, 0.5);
  gl_FragColor = vec4(s, s, s, 1.0);
}

       第一句#pragma glslify: sum = require(./module)表示调用外部模块,使用方法和node.js相同。

编译调用外部模块的glsl文件,用于实际开发

       命令行直接编译glslify文件,可用如下命令

glslify index.glsl -o output.glsl

       可以得到用于生产环境的文件output.glsl

// output.glsl
#define GLSLIFY 1
highp float sum(highp float x, highp float y) {
  return x + y;
}

void main() {
  float s = sum(0.5, 0.5);
  gl_FragColor = vec4(s, s, s, 1.0);
}

使用stack.gl上提供的模块

       glslify把glsl模块化。模块化之后就可以像npm,gem,pip一样,使用其他在线的库。glslify的库现在并不多,基本都由stack.gl维护。shader模块可以在http://stack.gl/packages/Shader Component部分找到。在stack.gl上也能找到非常多和webgl学习相关的资源。

下载一个glslify模块到本地开发环境

npm install glsl-noise

glslify使用npm作为包管理程序。

在glsl文件中使用该模块

       编写如下文件

#pragma glslify: noise = require(glsl-noise/simplex/2d)

void main() {
  float brightness = noise(gl_FragCoord.xy);

  gl_FragColor = vec4(vec3(brightness), 1.);
}

编译该文件

       编译该shader文件,可以得到如下用于生产环境的glsl文件。

#define GLSLIFY 1
//
// Description : Array and textureless GLSL 2D simplex noise function.
//      Author : Ian McEwan, Ashima Arts.
//  Maintainer : ijm
//     Lastmod : 20110822 (ijm)
//     License : Copyright (C) 2011 Ashima Arts. All rights reserved.
//               Distributed under the MIT License. See LICENSE file.
//               https://github.com/ashima/webgl-noise
//

vec3 mod289(vec3 x) {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec2 mod289(vec2 x) {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec3 permute(vec3 x) {
  return mod289(((x*34.0)+1.0)*x);
}

float snoise(vec2 v)
  {
  const vec4 C = vec4(0.211324865405187,  // (3.0-sqrt(3.0))/6.0
                      0.366025403784439,  // 0.5*(sqrt(3.0)-1.0)
                     -0.577350269189626,  // -1.0 + 2.0 * C.x
                      0.024390243902439); // 1.0 / 41.0
// First corner
  vec2 i  = floor(v + dot(v, C.yy) );
  vec2 x0 = v -   i + dot(i, C.xx);

// Other corners
  vec2 i1;
  //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0
  //i1.y = 1.0 - i1.x;
  i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0);
  // x0 = x0 - 0.0 + 0.0 * C.xx ;
  // x1 = x0 - i1 + 1.0 * C.xx ;
  // x2 = x0 - 1.0 + 2.0 * C.xx ;
  vec4 x12 = x0.xyxy + C.xxzz;
  x12.xy -= i1;

// Permutations
  i = mod289(i); // Avoid truncation effects in permutation
  vec3 p = permute( permute( i.y + vec3(0.0, i1.y, 1.0 ))
    + i.x + vec3(0.0, i1.x, 1.0 ));

  vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy), dot(x12.zw,x12.zw)), 0.0);
  m = m*m ;
  m = m*m ;

// Gradients: 41 points uniformly over a line, mapped onto a diamond.
// The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)

  vec3 x = 2.0 * fract(p * C.www) - 1.0;
  vec3 h = abs(x) - 0.5;
  vec3 ox = floor(x + 0.5);
  vec3 a0 = x - ox;

// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt( a0*a0 + h*h );
  m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h );

// Compute final noise value at P
  vec3 g;
  g.x  = a0.x  * x0.x  + h.x  * x0.y;
  g.yz = a0.yz * x12.xz + h.yz * x12.yw;
  return 130.0 * dot(m, g);
}

void main() {
  float brightness = snoise(gl_FragCoord.xy);

  gl_FragColor = vec4(vec3(brightness), 1.);
}